Going from small to large data in steganalysis

نویسندگان

  • Ivans Lubenko
  • Andrew D. Ker
چکیده

With most image steganalysis traditionally based on supervised machine learning methods, the size of training data has remained static at up to 20000 training examples. This potentially leads to the classifier being undertrained for larger feature sets and it may be too narrowly focused on characteristics of a source of cover images, resulting in degradation in performance when the testing source is mismatched or heterogeneous. However it is not difficult to obtain larger training sets for steganalysis through simply taking more photos or downloading additional images. Here, we investigate possibilities for creating steganalysis classifiers trained on large data sets using large feature vectors. With up to 1.6 million examples, naturally simpler classification engines must be used and we examine the hypothesis that simpler classifiers avoid overtraining and so perform better on heterogeneous data. We highlight the possibilities of online learners, showing that, when given sufficient training data, they can match or exceed the performance of complex classifiers such as Support Vector Machines. This applies to both their accuracy and training time. We include some experiments, not previously reported in the literature, which provide benchmarks of some known feature sets and classifier combinations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallelization of Rich Models for Steganalysis of Digital Images using a CUDA-based Approach

There are several different methods to make an efficient strategy for steganalysis of digital images. A very powerful method in this area is rich model consisting of a large number of diverse sub-models in both spatial and transform domain that should be utilized. However, the extraction of a various types of features from an image is so time consuming in some steps, especially for training pha...

متن کامل

نهان‌کاوی صوت مبتنی بر همبستگی بین فریم و کاهش بازگشتی ویژگی

Dramatic changes in digital communication and exchange of image, audio, video and text files result in a suitable field for interpersonal transfers of hidden information. Therefore, nowadays, preserving channel security and intellectual property and access to hidden information make new fields of researches naming steganography, watermarking and steganalysis. Steganalysis as a binary classifica...

متن کامل

Detection of perturbed quantization (PQ) steganography based on empirical matrix

Perturbed Quantization (PQ) steganography scheme is almost undetectable with the current steganalysis methods. We present a new steganalysis method for detection of this data hiding algorithm. We show that the PQ method distorts the dependencies of DCT coefficient values; especially changes much lower than significant bit planes. For steganalysis of PQ, we propose features extraction from the e...

متن کامل

Measuring technological gap ratio of wheat production using StoNED approach to metafrontier

The aim of this paper is to use the concept of the metafrontier function to study the determination of efficiency differentials and Technological Gap Ratio (TGR) on wheat production in Khorasan Razavi province. In this study, we used the metafrontier function and group frontier based on the concept of Stochastic Nonparametric Envelopment of Data analysis (StoNED). The data used in this stud...

متن کامل

Eigenvalues-based LSB steganalysis

So far, various components of image characteristics have been used for steganalysis, including the histogram characteristic function, adjacent colors distribution, and sample pair analysis. However, some certain steganography methods have been proposed that can thwart some analysis approaches through managing the embedding patterns. In this regard, the present paper is intended to introduce a n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012